Q.P.Code: 18EE0202

R18

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations June-2024 ELECTRICAL CIRCUITS-II

(Electrical & Electronics Engineering)

Time: 3 Hours			Max. Marks: 60		
PART-A					
		(Answer all the Questions $5 \times 2 = 10$ Marks)			
	1	a What is star and delta connection?	CO ₁	L1	2M
		b Define the time constant of RL circuit.	CO ₂	L1	2M
		c Define tree of a network.	CO ₃	L1	2M
		d What are hybrid parameters of two-port network?	CO4	L1	2M
		e What are the advantages of laplace transform in the analysis of circuit?	CO ₅	L1	2M
		PART-B			
		(Answer all Five Units $5 \times 10 = 50$ Marks)			
		UNIT-I			
	2	a Derive the relationship between Phase and Line voltages, currents in delta	CO ₁	L3	5M
		connected load.			
		b A balanced star connected load having an impedance (15+j20) Ω per		L3	5M
		phase is connected to a three phase 440 V,50Hz supply. Find line currents			
		and phase voltages. Assume RYB phase sequence and also calculate			
	Ř. H	power drawn by the load.			
		OR			
	3	a Explain two watt meter method for power measurement in three phase	CO1	L2	5M
		circuits	GO1	т 2	#: #3.#
		b Three impedances Z1=20, Z2=40, Z3=10 are delta connected to a		L3	5M
		400V,3¢ System. Determine i) phase currents ii) line currents iii) total			
		power consumed by the load.			
		UNIT-II			
	4	Derive the transient response of an RLC circuit with dc excitation	CO ₂	L3	10M
		OR	000	T 0	#3.#
	5	a Derive the transient response of an RL circuit with AC excitation.	CO2	L3	5M
		b A series RC circuit consists of resistor of 10 and capacitor of 0.1F has .a	CO ₂	L3	5M
		constant voltage of 20v is applied to the circuit at t=0.obtain the current			
		equation. Determine the voltage across the resistor and the capacitor.			
		UNIT-III			
	6	a Find the cutset matrix for the followings?	CO ₃	L3	5M
		F 1 1.62			
		5A P == 1- = ===			*

b Find the tieset matrix for the followings?

5M

CO₃ L₃

7 Determine current in 5Ω resistor for the circuit shown in figure using CO3 L3 10M network topology

UNIT-IV

8 Verify Reciprocity Theorem for the network shown in figure

CO₄ L₂ 10M

9 Determine Y parameters of the following network

CO4 L3 10M

UNIT-V

Find the signal y(t), the Laplace transform of signal which is Y(S) =

CO5 L3 10M

$$\frac{S^3 + 7S^2 + 18S + 20}{S^2 + 5X + 6}$$

OR

11 A 500 Ω resister, a 16Mh inductor, and a 25 nF capacitor are connected in CO5 L2 10M parallel which is placed in series with a 2000 Ω resistor. Express the impedance of this series combination as a rational function of s

*** END ***